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Hanf Numbers
Lω1,ω
Main Question
Answer

Preliminaries

De�nition

The Hanf number for S is the least in�nite cardinal κ such

that for all ϕ ∈ S , if ϕ has models in all in�nite cardinalities

less than κ, then it has models of all in�nite

An Lω1,ω-sentence φ characterizes an in�nite cardinal κ, if φ
has a model of cardinality κ, but no model of cardinality κ+.
cardinalities.
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Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let φ be an Lω1,ω-sentence. If φ has models of cardinality iα for

all α < ω1, then it has models of all in�nite cardinalities.

Theorem (Malitz, Baumgartner)

For every α < ω1, there exists a complete Lω1,ω-sentence φα that

has models of size iα, but no larger.

Thus, iω1 is the Hanf number for (complete) Lω1,ω-sentences.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Hanf Numbers
Lω1,ω
Main Question
Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let φ be an Lω1,ω-sentence. If φ has models of cardinality iα for

all α < ω1, then it has models of all in�nite cardinalities.

Theorem (Malitz, Baumgartner)

For every α < ω1, there exists a complete Lω1,ω-sentence φα that

has models of size iα, but no larger.

Thus, iω1 is the Hanf number for (complete) Lω1,ω-sentences.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Hanf Numbers
Lω1,ω
Main Question
Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let φ be an Lω1,ω-sentence. If φ has models of cardinality iα for

all α < ω1, then it has models of all in�nite cardinalities.

Theorem (Malitz, Baumgartner)

For every α < ω1, there exists a complete Lω1,ω-sentence φα that

has models of size iα, but no larger.

Thus, iω1 is the Hanf number for (complete) Lω1,ω-sentences.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Hanf Numbers
Lω1,ω
Main Question
Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let φ be an Lω1,ω-sentence. If φ has models of cardinality iα for

all α < ω1, then it has models of all in�nite cardinalities.

Theorem (Malitz, Baumgartner)

For every α < ω1, there exists a complete Lω1,ω-sentence φα that

has models of size iα, but no larger.

Thus, iω1 is the Hanf number for (complete) Lω1,ω-sentences.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Hanf Numbers
Lω1,ω
Main Question
Answer

Main Question (Sy Friedman)

What is the Hanf number for the Scott sentences of computable

structures?
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Answer

Answer

Theorem (S.Goncharov,J.Knight,S.)

(a) Let A be a computable structure in a computable vocabulary

τ , and let φ be a Scott sentence for A. If φ has models of

cardinality iα for all α < ωCK
1

, then it has models of all in�nite

cardinalities.

(b) There exists a partial computable function I such that for each

a ∈ O, I (a) is a tuple of computable indices for several objects,

among which are a relational vocabulary τa and the atomic

diagram of a τa-structure Aa. The Scott sentence of Aa

characterizes the cardinal i|a|, where |a| is the ordinal with

notation a.
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Corollary

The Hanf number for Scott sentences of computable structures is

iωCK1 .
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Computable Structures
Morley-Barwise Theorem
Proof

De�nition

ωCK
1

is the least non-computable ordinal.

LωCK1
denotes the constructible universe at height ωCK

1
.

Let τ be a computable vocabulary. A τ -structure A is

computable if its atomic diagram is computable.

An Lω1,ω(τ)-sentence is computable if the in�nite disjunctions

and conjunctions are over c.e. sets.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Computable Structures
Morley-Barwise Theorem
Proof

De�nition

ωCK
1

is the least non-computable ordinal.

LωCK1
denotes the constructible universe at height ωCK

1
.

Let τ be a computable vocabulary. A τ -structure A is

computable if its atomic diagram is computable.

An Lω1,ω(τ)-sentence is computable if the in�nite disjunctions

and conjunctions are over c.e. sets.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Computable Structures
Morley-Barwise Theorem
Proof

De�nition

ωCK
1

is the least non-computable ordinal.

LωCK1
denotes the constructible universe at height ωCK

1
.

Let τ be a computable vocabulary. A τ -structure A is

computable if its atomic diagram is computable.

An Lω1,ω(τ)-sentence is computable if the in�nite disjunctions

and conjunctions are over c.e. sets.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Computable Structures
Morley-Barwise Theorem
Proof

De�nition

ωCK
1

is the least non-computable ordinal.

LωCK1
denotes the constructible universe at height ωCK

1
.

Let τ be a computable vocabulary. A τ -structure A is

computable if its atomic diagram is computable.

An Lω1,ω(τ)-sentence is computable if the in�nite disjunctions

and conjunctions are over c.e. sets.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Computable Structures
Morley-Barwise Theorem
Proof

De�nition

ωCK
1

is the least non-computable ordinal.

LωCK1
denotes the constructible universe at height ωCK

1
.

Let τ be a computable vocabulary. A τ -structure A is

computable if its atomic diagram is computable.

An Lω1,ω(τ)-sentence is computable if the in�nite disjunctions

and conjunctions are over c.e. sets.

I. Souldatos Hanf Number for Computable Structures



Preliminaries
Upper Bound
Lower Bound

Computable Structures
Morley-Barwise Theorem
Proof

Facts

LωCK1
is an admissible set.

The subsets of ω in LωCK1
are exactly the hyperarithmetical

sets.

All computable structures are elements of LωCK1
.

All computable Lω1,ω-formulas in a computable vocabulary are

elements of LωCK1
.
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Computable Structures
Morley-Barwise Theorem
Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with o(A) = γ, and let φ be a

sentence of Lω1,ω ∩ A. Then either

φ characterizes some ℵα < iγ , or
φ has arbitrarily large models.

Apply this theorem for A = LωCK1
and φ a computable

Lω1,ω-sentence.

Corollary

The Hanf number for computable Lω1,ω-sentences is ≤ iωCK1 .
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Computable Structures
Morley-Barwise Theorem
Proof

This would su�ce for the �rst part of the theorem, but there are

computable structures with no computable Scott sentence.

We bypass this problem by expanding the vocabulary.

Lemma

Let τ be a computable vocabulary, and let A be a computable

τ -structure with Scott sentence φ. There is a computable

vocabulary τ∗ ⊇ τ with a computable in�nitary τ∗-sentence φ∗

such that for any τ -structure B,

B |= φ i� B has a τ∗-expansion B∗ satisfying φ∗.
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Morley-Barwise Theorem
Proof

Proof: Hanf Number is ≤ iωCK1 .

From the original Scott sentence φ, in a computable

vocabulary τ , pass to τ∗ and φ∗.

For each α < ωCK
1

, the sentence φ has a model B of

cardinality iα. Expand these models to models of φ∗.

By Morley-Barwise Theorem, φ∗ has arbitrarily large models.

The τ -reducts of all these models satisfy φ.

Therefore, φ has arbitrarily large models.
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Computable Fraïssé Limits
Construction
Proof

For second part, we need a computable version of Fraïssé limit.

For our purposes we

1 work only with relational vocabularies, but these vocabularies

maybe in�nite.

2 take the Fraïssé limit of some collection K of �nite structures

3 K satis�es AP and JEP, but not HP, and

4 there are some computability assumptions on K .

The existence and uniqueness of the Fraïssé limit are rather

straightforward.
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Computable Fraïssé Limits
Construction
Proof

De�nition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a

(countable) family of �nite τ -structures. A computable

representation of K is a computable sequence K, with

K(i) = (ei , ni ) such that

1 ϕei is the characteristic function of the atomic diagram of a

structure Ci isomorphic to some element of K , and Dni is the

universe of Ci ,

2 for each M ∈ K , there is some i such that Ci
∼= M.
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1 ϕei is the characteristic function of the atomic diagram of a

structure Ci isomorphic to some element of K , and Dni is the

universe of Ci ,

2 for each M ∈ K , there is some i such that Ci
∼= M.
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Let τ be a computable relational vocabulary, and let K be a family

of �nite τ -structures. Suppose that (Ci )i∈ω is the sequence of

structures given by a computable representation K of K .

1 The corresponding embedding relation, denoted by E (K), is
the set of triples (i , j , f ) such that f is an embedding of Ci

into Cj .

2 We say that K has the strong embedding property if E (K) is
computable.

If τ is �nite, E (K) is computable.

If τ is in�nite, this need not be the case.
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Theorem

There is a computable vocabulary τ and a family K of �nite

τ -structures that has a computable representation K of such that

E (K) is not even c.e.
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De�nition

Let

τ be a computable relational vocabulary,

K a family of �nite τ -structures,

K a computable representation of K with (Ci )i∈ω the

corresponding sequence of structures in K and

A be a Fraïssé limit of K .

Denote by E (K,A) the set of pairs (i , f ) such that f is an

embedding of Ci into A.
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Theorem (Computable Fraïssé Limit)

Let

τ be a computable relational vocabulary,

K a family of �nite τ -structures and

K a computable representation of K with the strong

embedding property

Then there is a computable Fraïssé limit A such that E (K,A) is
computable.

In fact, we have a uniform e�ective procedure for passing from τ , K
and E (K) to D(A) and E (K,A).
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Construction

The construction in the second half of the theorem is based on the

following idea.

For any triple of distinct elements v , u ∈ P(κ), let

F (v , u) = least α ∈ κ such that v(α) 6= u(α).

For all v0, v1, v2 ∈ P(κ),

if F (v0, v1) 6= F (v0, v2), then
F (v1, v2) = min{F (v0, v1),F (v0, v2)}.
if F (v0, v1) = F (v0, v2), then F (v1, v2) > F (v0, v1).

Call this last property F.
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Building on this idea consider the collection K of �nite structures

that satisfy the following:

1 V ,M,U partition the universe

2 M is linearly ordered by <.

3 There is a function F from [V ]2 to M.

4 F satis�es F.

5 U is linearly ordered by <′.

6 U de�nes a partition of V .
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Theorem

1 K satis�es AP and JEP, and therefore has a Fraïssé limit A.
2 If φ is the Scott sentence of A, then in all models of φ,
|U| ≤ |V | ≤ 2|M|.

3 If (L,≺) is a dense linear order with a co�nal sequence of

order type κ, then there is a model of φ with (M, <) ∼= (L,≺)
and V ,U both have size 2κ.
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Based on this idea we build by computable trans�nite induction on

ordinal notations a ∈ O the following function I .

For every a, I (a) is a tuple of computable indices including the

following:

1 some vocabulary τa
2 a computable representation Ka for some collection K a of

�nite τa-structures

3 the atomic diagram of Aa, where this is a Fraïssé limit of K a,

Moreover, the Scott sentence φa of Aa characterizes the cardinal

i|a|, where |a| is the ordinal with notation a.

This �nishes the proof!
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�nite τa-structures

3 the atomic diagram of Aa, where this is a Fraïssé limit of K a,

Moreover, the Scott sentence φa of Aa characterizes the cardinal

i|a|, where |a| is the ordinal with notation a.

This �nishes the proof!
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