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Preliminaries

De�nition

Lω1,ω = �rst-order formulas +
∨

n∈ω φn +
∧

n∈ω φn

Lω1,ω satis�es the Downward Lowenheim-Skolem Theorem,

but fails the Upward Lowenheim-Skolem.
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Spectra

De�nition

For an Lω1,ω-sentence φ, de�ne the properties

Model-existence at κ (ME(κ) for short) for �φ has a model of

size κ�

Amalgamation at κ (AP(κ) for short) for �ME(κ) + the

models of φ of size κ satisfy amalgamation�

The model existence spectrum of φ,
ME-Spec(φ) = {κ|ME (κ)}
The amalgamation spectrum of φ, AP-Spec(φ) = {κ|AP(κ)}
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Main Question

What is known for the model existence and amalgamation spectra

of Lω1,ω-sentences?
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Very Important Remark

The amalgamation notion is not unique. One needs to specify the

embedding relation.

For the rest of the talk we assume that the embedding relation ≺
satis�es the following axioms (for an Abstract Elementary Class)
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Assume A,B,C are models of some φ.

1 A ≺ B implies A ⊂ B ;

2 ≺ is re�exive and transitive;
3 If 〈Ai |i ∈ κ〉 is an increasing ≺- chain, then

(i)
⋃

i∈I
Ai is a model of φ;

(ii) for each i ∈ I , Ai ≺
⋃

i∈I
Ai ; and

(iii) if for each i ∈ I , Ai ≺ M, then
⋃

i∈I
Ai ≺ M.

4 If A ≺ B , B ≺ C and A ⊂ B , then A ≺ B .

5 There is a Lowenheim-Skolem number LS such that if A ⊂ B

and B satis�es φ, then there is some A′ which satis�es φ,
A ⊂ A′ ≺ B , and |A′| ≤ |A|+ LS .

I. Souldatos spectra of Lω1,ω-sentences



Introduction
Model Existence Spectra
Amalgamation Spectra

Clusters
Closure Properties
Kurepa Trees
De�nability?
Computable Structures

Observation

By Downward Lowenheim-Skolem, ME-Spec(φ) is downward

closed.

So, either ME-Spec(φ)=[ℵ0,ℵα] (right-closed spectrum) or

ME-Spec(φ)=[ℵ0,ℵα) (right-open spectrum)

De�nition

If ME-Spec(φ)=[ℵ0,ℵα], then φ characterizes ℵα.
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Hanf Number

Theorem (Morley, López-Escobar)

Let φ be an Lω1,ω-sentence. If φ has models of cardinality iα for

all α < ω1, then it has models of all in�nite cardinalities.

Reminder:

i0 = ℵ0;
iα+1 = 2iα ; and

iλ = supα<λ iα.

Corollary

If ℵα is characterized by an Lω1,ω-sentence, then ℵα < iω1 .
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Beths

Theorem (Malitz, Baumgartner)

For every α < ω1, there exists a complete Lω1,ω-sentence φα that

characterizes iα.

Thus, iω1 is optimal and is called the Hanf number for Lω1,ω.
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Alephs

Theorem (J.Knight)

There exists a complete Lω1,ω-sentence that characterizes ℵ1.

Theorem (Hjorth)

For every α < ω1, there exists an Lω1,ω-sentence φα that

characterizes ℵα.

Hjorth's theorem generalizes to

Theorem

Assume ℵβ is characterized by φβ . Then for every α < ω1, there

exists an Lω1,ω-sentence φ
β
α that characterizes ℵβ+α.
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ℵ0
�� ��

ℵω1

�� �� �� �� ��
iω1

clusters of characterizable cardinals
of length ω1

��������9
�
�	

HH
HHj . . .
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clusters of characterizable cardinals
of length ω1
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HHj . . .

Under GCH there is only one cluster.
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ℵ0
�� ��

ℵω1

�� �� �� �� ��
iω1

clusters of characterizable cardinals
of length ω1

��������9
�
�	

HH
HHj . . .

Under GCH there is only one cluster.

Under ¬GCH, it is consistent that there exist

non-characterizable cardinals below iω1 .

I. Souldatos spectra of Lω1,ω-sentences



Introduction
Model Existence Spectra
Amalgamation Spectra

Clusters
Closure Properties
Kurepa Trees
De�nability?
Computable Structures

Theorem

The set of cardinals characterized by Lω1,ω-sentences is closed
under

1 successor;

2 countable unions;

3 countable products;

4 powerset.

Many of the results are true even for the set of cardinals

characterized by complete Lω1,ω-sentences.
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Let C be the least set of cardinals that contains ℵ0 and is closed

under (1)-(4), e.g. successor, countable unions, countable products,

and powerset.

Theorem (S.)

C is also closed for powers

Question (S.)

Does C contain all characterizable cardinals?

Consistently yes, e.g. under GCH.

Theorem (Sinapova,S.)

Consistently no.
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There exists an Lω1,ω-sentence φ that characterizes the

maximum of 2ℵ0 and B.

B = sup{κ|there exists a Kurepa tree

withκ many branches}.

Reminder: A Kurepa tree has height ω1, countable levels and

more than ℵ1 many branches.

So, ℵ1 < B ≤ 2ℵ1 .
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Manipulating the size of Kurepa trees we can produce a variety of

consistency results.

Theorem (Sinapova, S.)

If ZFC is consistent, then so are the following:

ZFC+ (ℵω1 = B < 2ℵ0)

ZFC+ (2ℵ0 < ℵω1 = B < 2ℵ1) +�B is a maximum�, i.e. there

exists a Kurepa tree of size ℵω1�.
Assuming the consistency of ZFC+�a Mahlo exists�, then the

following is also consistent:

ZFC+ (2ℵ0 < B = 2ℵ1) + �2ℵ1 is weakly inaccessible + �for

every κ < 2ℵ1 there is a Kurepa tree with exactly κ-many

maximal branches, but no Kurepa tree has exactly 2ℵ1-many

branches.�

I. Souldatos spectra of Lω1,ω-sentences



Introduction
Model Existence Spectra
Amalgamation Spectra

Clusters
Closure Properties
Kurepa Trees
De�nability?
Computable Structures

Reminder: A cardinal λ is weakly inaccessible if it is a regular

limit, i.e. λ = ℵλ.

Corollary

There is an Lω1,ω-sentence φ for which it is consistent that

ME-Spec(φ) = [ℵ0, 2ℵ0 ];
CH (or ¬CH ) + �2ℵ1 is a regular cardinal greater than ℵ2� +
�ME-Spec(φ) = [ℵ0, 2ℵ1 ]�;
2ℵ0 < ℵω1 < 2ℵ1 + �ME-Spec(φ) = [ℵ0,ℵω1 ]; and
2ℵ0 < 2ℵ1 + �2ℵ1 is weakly inaccessible� +

�ME-Spec(φ) = [ℵ0, 2ℵ1).
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Remarks

1 Althought the characterization of 2ℵ0 and 2ℵ1 was known

before, this is the �rst example that can consistently

characterize either.

2 If 2ℵ0 = ℵω1 , then ℵω1 is characterizable. This is the �rst

example that consistently with 2ℵ0 < ℵω1 characterizes ℵω1 .
Moreover, the proof works for many other cardinals besides

ℵω1 .
3 If κ = supn∈ω κn and φn characterizes κn, then

∨
n
φn has

spectrum [ℵ0, κ). All previous examples of sentences with

right-open spectra where of the form
∨

n
φn. This is the �rst

example of a sentence with a right-open spectrum where the

right endpoint has uncountable co�nality (indeed it is a regular

cardinal).
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Recall that C is the least set that contains ℵ0 and is closed under

successor, countable unions, countable products, and powerset.

Corollary

If ZFC is consistent then so is ZFC+ (2ℵ0 < ℵω1 = B < 2ℵ1) + �B
is not in the set C described above�.

This refuted a �minimalist� view of characterizable cardinals.
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Theorem

The set of cardinals characterized by Lω1,ω-sentences is also closed

under

5 powers;

6 κ 7→ Ded(κ) = max{λ|there exists a linear order of size λ
with a dense subset of size κ};

7 κ 7→
max{λ|there exists a κ-Kurepa tree with λ many branches};

8 . . .

We have only partial results for similar closures properties when

complete Lω1,ω-sentences are concerned.
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Theorem (S.)

If (ℵα)κ is characterized by a complete sentence, then the same is

true for (ℵα+β)κ, for all β < ω1.

Note: We do not assume that either ℵα or κ is characterizable.

Theorem (S.)

If ℵα and κℵα are characterized by a complete sentence, then the

same is true for κℵα+β , for all β < ω1.

Note: We do not assume that κ is characterizable.
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Theorem (S.)

If ℵα and is characterized by a complete sentence, then the same is

true for 2ℵα+β , for all 0 < β < ω1.

The question for β = 0 remains open. It is known under extra

assumptions.
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Negative Results

Theorem (S.)

The set of characterizable cardinals is not closed under

predecessor, and

co�nality.
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Questions

1 Do all these theorems and closure properties indicate a

de�nability issue?

2 How to make this precise?
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Theorem (Morley, Barwise)

Let A be a countable admissible set with o(A) = γ, and let φ be a

sentence of Lω1,ω ∩ A. Then either

φ characterizes some ℵα < iγ , or
φ has arbitrarily large models.
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Question

What cardinals can be characterized by computable structures?
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Theorem (S.Goncharov,J.Knight,S.)

(a) Let A be a computable structure in a computable vocabulary

τ , and let φ be a Scott sentence for A. If φ has models of

cardinality iα for all α < ωCK
1

, then it has models of all in�nite

cardinalities.

(b) There exists a partial computable function I such that for each

a ∈ O, I (a) is a tuple of computable indices for several objects,

among which are a relational vocabulary τa and the atomic

diagram of a τa-structure Aa. The Scott sentence of Aa

characterizes the cardinal i|a|, where |a| is the ordinal with

notation a.
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Corollary

The Hanf number for Scott sentences of computable structures is

iωCK1 .
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Amalgamation Spectra

Remarks

Unlike model-existence, amalgamation spectra are not

downwards closed.

However, most of the known examples are either initial or

co-initial segments of the model-existence spectra.

We lack theorems of the form �If X is an amalgamation

spectrum, then Y(X) is also an amalgamation spectrum�.
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The �rst example of an amalgamation spectrum that is not an

interval is the following:

Theorem (J. Baldwin, M. Koerwien. C.Laskowski)

Let 1 ≤ n < ω. There exists an Lω1,ω-sentence φn with

ME-Spec(φ) = [ℵ0,ℵn] and AP-Spec(φ) = [ℵ0,ℵn−2] ∪ {ℵn}.

The reason that amalgamation holds in ℵn is that all models are

maximal.
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The work on Kurepa trees yields the following results for

amalgamation:

Theorem (Sinapova, S.)

There is an Lω1,ω-sentence φ for which it is consistent that

AP-Spec(φ) = [ℵ1, 2ℵ0 ];
CH (or ¬CH ) + �2ℵ1 is a regular cardinal greater than ℵ2� +
�AP-Spec(φ) = [ℵ1, 2ℵ1 ]�;
2ℵ0 < ℵω1 + �AP-Spec(φ) = [ℵ1,ℵω1 ]; and
2ℵ0 < 2ℵ1 + �2ℵ1 is weakly inaccessible� +

�AP-Spec(φ) = [ℵ1, 2ℵ1).
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Theorem (J. Baldwin, W. Boney)

Let φ be an Lω1,ω-sentence, κ a strongly compact cardinal. If

AP-Spec(φ) contains a co�nal subset of κ, then AP-Spec(φ)
contains [κ,∞).

So, the �rst strongly compact is greater or equal to �the Hanf

number for amalgamation� (this needs to be de�ned precisely).
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Open Questions

Is it consistent that for an Lω1,ω-sentence φ, AP-Spec(φ) is a
co�nal subset of the �rst measurable?

Can we �nd a characterization of the closure properties on the

characterizable cardinals?

Is it consistent that for an Lω1,ω-sentence φ, ME-Spec(φ)
equals [ℵ0,ℵω1) (right-open)? Same question for the

AP-Spec(φ).
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References

Thank you!

Copy of these slides can be found at

http://souldatosresearch.wordpress.com/

Questions?
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