

Statue of Aristotle at the Aristotle University of Thessaloniki, Greece

I. Souldatos

spectra of $\mathcal{L}_{\omega_{1},\omega}$ -sentences

The model-existence and amalgamation spectra of $\mathcal{L}_{\omega_1,\omega} ext{-sentences}$

Logic Seminar - Notre Dame 2018 02 06

Ioannis (Yiannis) Souldatos

 $\mathcal{L}_{\omega_1,\omega}$ Spectra Main Questions

Preliminaries

Definition

- $\mathcal{L}_{\omega_1,\omega} = \text{first-order formulas} + \bigvee_{n \in \omega} \phi_n + \bigwedge_{n \in \omega} \phi_n$
- *L*_{ω1,ω} satisfies the Downward Lowenheim-Skolem Theorem, but fails the Upward Lowenheim-Skolem.

 $\mathcal{L}_{\omega_1,\omega}$ Spectra Main Questions

Spectra

Definition

For an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ , define the properties

- Model-existence at κ (ME(κ) for short) for "φ has a model of size κ"
- Amalgamation at κ (AP(κ) for short) for "ME(κ) + the models of φ of size κ satisfy amalgamation"
- The model existence spectrum of ϕ , ME-Spec $(\phi) = \{\kappa | ME(\kappa)\}$
- The amalgamation spectrum of ϕ , AP-Spec $(\phi) = \{\kappa | AP(\kappa)\}$

 $\mathcal{L}_{\omega_1,\omega}$ Spectra Main Questions

Main Question

What is known for the model existence and amalgamation spectra of $\mathcal{L}_{\omega_1,\omega}$ -sentences?

 $\mathcal{L}_{\omega_1,\omega}$ Spectra Main Questions

Very Important Remark

The amalgamation notion is not unique. One needs to specify the embedding relation.

For the rest of the talk we assume that the embedding relation \prec satisfies the following axioms (for an Abstract Elementary Class)

Assume A, B, C are models of some ϕ .

- $A \prec B$ implies $A \subset B$;
- 2 \prec is reflexive and transitive;
- If ⟨A_i|i ∈ κ⟩ is an increasing ≺- chain, then
 (i) ⋃_{i∈I} A_i is a model of φ;
 (ii) for each i ∈ I, A_i ≺ ⋃_{i∈I} A_i; and
 (iii) if for each i ∈ I, A_i ≺ M, then ⋃_{i∈I} A_i ≺ M.

 $If A \prec B, B \prec C and A \subset B, then A \prec B.$

So There is a Lowenheim-Skolem number LS such that if A ⊂ B and B satisfies φ, then there is some A' which satisfies φ, A ⊂ A' ≺ B, and |A'| ≤ |A| + LS.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Observation

- By Downward Lowenheim-Skolem, ME-Spec(φ) is downward closed.
- So, either ME-Spec(φ)=[ℵ₀, ℵ_α] (right-closed spectrum) or ME-Spec(φ)=[ℵ₀, ℵ_α) (right-open spectrum)

Definition

If ME-Spec(ϕ)=[\aleph_0, \aleph_α], then ϕ characterizes \aleph_α .

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1$, then it has models of all infinite cardinalities.

Reminder:

- $\beth_0 = \aleph_0;$
- $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$; and
- $\beth_{\lambda} = \sup_{\alpha < \lambda} \beth_{\alpha}$.

Corollary

If \aleph_{α} is characterized by an $\mathcal{L}_{\omega_{1},\omega}$ -sentence, then $\aleph_{\alpha} < \beth_{\omega_{1}}$.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem (Malitz, Baumgartner)

For every $\alpha < \omega_1$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that characterizes \beth_{α} .

Thus, \beth_{ω_1} is optimal and is called the *Hanf number* for $\mathcal{L}_{\omega_1,\omega}$.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Alephs

Theorem (J.Knight)

There exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_1 .

Theorem (Hjorth)

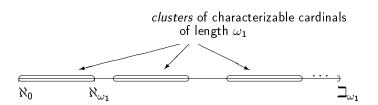
For every $\alpha < \omega_1$, there exists an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that characterizes \aleph_{α} .

Hjorth's theorem generalizes to

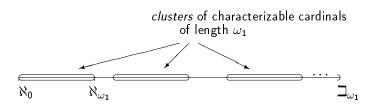
Theorem

Assume \aleph_{β} is characterized by ϕ^{β} . Then for every $\alpha < \omega_1$, there exists an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α}^{β} that characterizes $\aleph_{\beta+\alpha}$.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

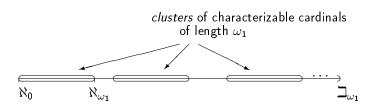


Clusters Closure Properties Kurepa Trees Definability? Computable Structures



Under GCH there is only one cluster.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures



Under GCH there is only one cluster. Under \neg GCH, it is consistent that there exist non-characterizable cardinals below \beth_{ω_1} .

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem

The set of cardinals characterized by $\mathcal{L}_{\omega_{1},\omega}\text{-sentences}$ is closed under

- successor;
- 2 countable unions;
- ountable products;

owerset.

Many of the results are true even for the set of cardinals characterized by **complete** $\mathcal{L}_{\omega_1,\omega}$ -sentences.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Let C be the least set of cardinals that contains \aleph_0 and is closed under (1)-(4), e.g. successor, countable unions, countable products, and powerset.

Theorem (S.)

C is also closed for powers

Question (S.)

Does C contain all characterizable cardinals?

Consistently yes, e.g. under GCH.

Theorem (Sinapova,S.)

Consistently no.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

There exists an L_{ω1,ω}-sentence φ that characterizes the maximum of 2^{ℵ0} and B.

 $\mathcal{B} = \sup\{\kappa | \text{there exists a Kurepa tree} \}$

with κ many branches}.

Reminder: A Kurepa tree has height ω₁, countable levels and more than ℵ₁ many branches.
 So, ℵ₁ < B ≤ 2^{ℵ1}.

Manipulating the size of Kurepa trees we can produce a variety of consistency results.

Theorem (Sinapova, S.)

If ZFC is consistent, then so are the following:

• ZFC+ (
$$\aleph_{\omega_1} = \mathcal{B} < 2^{\aleph_0}$$
)

• ZFC+ $(2^{\aleph_0} < \aleph_{\omega_1} = \mathcal{B} < 2^{\aleph_1}) + \mathcal{B}$ is a maximum", i.e. there exists a Kurepa tree of size \aleph_{ω_1} ".

Assuming the consistency of ZFC+"a Mahlo exists", then the following is also consistent:

 ZFC+ (2^{ℵ0} < B = 2^{ℵ1}) + "2^{ℵ1} is weakly inaccessible + "for every κ < 2^{ℵ1} there is a Kurepa tree with exactly κ-many maximal branches, but no Kurepa tree has exactly 2^{ℵ1}-many branches."

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Reminder: A cardinal λ is weakly inaccessible if it is a regular limit, i.e. $\lambda = \aleph_{\lambda}$.

Corollary

There is an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ for which it is consistent that

- CH (or ¬CH) + "2^{ℵ1} is a regular cardinal greater than ℵ₂" + "ME-Spec(φ) = [ℵ₀, 2^{ℵ1}]";
- $2^{\aleph_0} < \aleph_{\omega_1} < 2^{\aleph_1} + "ME-Spec(\phi) = [\aleph_0, \aleph_{\omega_1}];$ and

•
$$2^{\aleph_0} < 2^{\aleph_1} + "2^{\aleph_1}$$
 is weakly inaccessible" +
"ME-Spec(ϕ) = [$\aleph_0, 2^{\aleph_1}$).

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Remarks

- Althought the characterization of 2^{ℵ₀} and 2^{ℵ₁} was known before, this is the first example that can consistently characterize either.
- If 2^{ℵ₀} = ℵ_{ω₁}, then ℵ_{ω₁} is characterizable. This is the first example that consistently with 2^{ℵ₀} < ℵ_{ω₁} characterizes ℵ_{ω₁}. Moreover, the proof works for many other cardinals besides ℵ_{ω₁}.
- If $\kappa = \sup_{n \in \omega} \kappa_n$ and ϕ_n characterizes κ_n , then $\bigvee_n \phi_n$ has spectrum $[\aleph_0, \kappa)$. All previous examples of sentences with right-open spectra where of the form $\bigvee_n \phi_n$. This is the first example of a sentence with a right-open spectrum where the right endpoint has uncountable cofinality (indeed it is a regular cardinal).

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Recall that C is the least set that contains \aleph_0 and is closed under successor, countable unions, countable products, and powerset.

Corollary

If ZFC is consistent then so is ZFC+ $(2^{\aleph_0} < \aleph_{\omega_1} = \mathcal{B} < 2^{\aleph_1}) + "\mathcal{B}$ is not in the set C described above".

This refuted a "minimalist" view of characterizable cardinals.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem

The set of cardinals characterized by $\mathcal{L}_{\omega_1,\omega}\text{-sentences}$ is also closed under

- owers;
- κ → Ded(κ) = max{λ|there exists a linear order of size λ with a dense subset of size κ};

 $\bigcirc \kappa \mapsto$

3 . . .

 $\max{\lambda | there \ exists \ a \ \kappa}$ -Kurepa tree with λ many branches};

We have only partial results for similar closures properties when *complete* $\mathcal{L}_{\omega_{1},\omega}$ -sentences are concerned.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem (S.)

If $(\aleph_{\alpha})^{\kappa}$ is characterized by a complete sentence, then the same is true for $(\aleph_{\alpha+\beta})^{\kappa}$, for all $\beta < \omega_1$.

Note: We do not assume that either \aleph_{α} or κ is characterizable.

Theorem (S.)

If \aleph_{α} and $\kappa^{\aleph_{\alpha}}$ are characterized by a complete sentence, then the same is true for $\kappa^{\aleph_{\alpha+\beta}}$, for all $\beta < \omega_1$.

Note: We do not assume that κ is characterizable.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem (S.)

If \aleph_{α} and is characterized by a complete sentence, then the same is true for $2^{\aleph_{\alpha+\beta}}$, for all $0 < \beta < \omega_1$.

The question for $\beta = 0$ remains open. It is known under extra assumptions.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Negative Results

Theorem (S.)

The set of characterizable cardinals is **not** closed under

- predecessor, and
- cofinality.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Questions

- Do all these theorems and closure properties indicate a definability issue?
- *Q* How to make this precise?

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha} < \beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Question

What cardinals can be characterized by computable structures?

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Theorem (S.Goncharov, J.Knight, S.)

- (a) Let \mathcal{A} be a computable structure in a computable vocabulary τ , and let ϕ be a Scott sentence for \mathcal{A} . If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1^{CK}$, then it has models of all infinite cardinalities.
- (b) There exists a partial computable function I such that for each a ∈ O, I(a) is a tuple of computable indices for several objects, among which are a relational vocabulary τ_a and the atomic diagram of a τ_a-structure A_a. The Scott sentence of A_a characterizes the cardinal □_{|a|}, where |a| is the ordinal with notation a.

Clusters Closure Properties Kurepa Trees Definability? Computable Structures

Corollary

The Hanf number for Scott sentences of computable structures is $\beth_{\omega_1^{CK}}$.

Remarks First Examples Hanf Number Open Questions

Amalgamation Spectra

Remarks

- Unlike model-existence, amalgamation spectra are not downwards closed.
- However, most of the known examples are either initial or co-initial segments of the model-existence spectra.
- We lack theorems of the form "If X is an amalgamation spectrum, then Y(X) is also an amalgamation spectrum".

Remarks First Examples Hanf Number Open Questions

The first example of an amalgamation spectrum that is not an interval is the following:

Theorem (J. Baldwin, M. Koerwien. C.Laskowski)

Let $1 \leq n < \omega$. There exists an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_n with *ME-Spec* $(\phi) = [\aleph_0, \aleph_n]$ and *AP-Spec* $(\phi) = [\aleph_0, \aleph_{n-2}] \cup {\aleph_n}$.

The reason that amalgamation holds in \aleph_n is that all models are maximal.

Remarks First Examples Hanf Number Open Questions

The work on Kurepa trees yields the following results for amalgamation:

Theorem (Sinapova, S.)

There is an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ for which it is consistent that

• AP-Spec
$$(\phi) = [\aleph_1, 2^{\aleph_0}];$$

- CH (or $\neg CH$) + " 2^{\aleph_1} is a regular cardinal greater than \aleph_2 " + "AP-Spec(ϕ) = [$\aleph_1, 2^{\aleph_1}$]";
- $2^{\aleph_0} < \aleph_{\omega_1}$ + "AP-Spec(ϕ) = [$\aleph_1, \aleph_{\omega_1}$]; and

•
$$2^{\aleph_0} < 2^{\aleph_1} + "2^{\aleph_1}$$
 is weakly inaccessible" +
"AP-Spec(ϕ) = [$\aleph_1, 2^{\aleph_1}$).

Remarks First Examples Hanf Number Open Questions

Theorem (J. Baldwin, W. Boney)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence, κ a strongly compact cardinal. If AP-Spec(ϕ) contains a cofinal subset of κ , then AP-Spec(ϕ) contains [κ, ∞).

So, the first strongly compact is greater or equal to "the Hanf number for amalgamation" (this needs to be defined precisely).

Remarks First Examples Hanf Number Open Questions

Open Questions

- Is it consistent that for an L_{ω1,ω}-sentence φ, AP-Spec(φ) is a cofinal subset of the first measurable?
- Can we find a characterization of the closure properties on the characterizable cardinals?
- Is it consistent that for an L_{ω1,ω}-sentence φ, ME-Spec(φ) equals [ℵ₀, ℵ_{ω1}) (right-open)? Same question for the AP-Spec(φ).

Remarks First Examples Hanf Number Open Questions

- Thank you!
- Copy of these slides can be found at http://souldatosresearch.wordpress.com/
- Questions?